To find the highest and lowest points on the ellipse:
\[\nabla f = \lambda \nabla g + \mu \nabla h \]
The highest and lowest points will be on the \(z \)-axis so:
\[f(x, y, z) = 2 \quad g(x, y, z) = x^2 + y^2 - 2 = 0 \quad h(x, y, z) = x^2 + y^2 + z^2 = 24 \]

\[x : 0 = \lambda (2x) + \mu (1) \]
\[y : 0 = \lambda (2y) + \mu (1) \]
\[z : 0 = \lambda (2y) + \mu (1) \]

\[-\lambda = 2x \]
\[-\mu = 2y \]
\[2x = 2y \]
\[2z = 2z \]
\[\lambda = x \]

To find values for \(x, y, \) and \(z \):
\[x^2 + y^2 - 2 = 0 \]
\[2x^2 - 2 = 0 \]
\[2x^2 - 24 - 2x = 0 \]
\[x^2 + x = 12 \]
\[x^2 + x - 12 = 0 \]
\[(x+4)(x-3) \]
\[x = -4, 3 \]

\[y = x \]
\[y = -4, 3 \]
\[z = \text{varies} \]

\[(-4, -4, 32) \quad \text{and} \quad (3, 3, 18) \]

The minimum point is \((3, 3, 18)\) and the maximum point is \((-4, -4, 32)\).

We know which point is the min and which is the max by looking at the \(z \) values. The largest \(z \) is the max and the smallest \(z \) is the min.
2. \[Z = ax^2 - axy^2 \text{ paraboloid} \]
\[Z = ax^2 \]
\[V_p = \text{volume of frustum} \]
\[V_c = \text{volume of approx. cylinder} \]

\[V_p = \int_0^{2\pi} \int_0^{\arctan\left(\frac{a}{b}\right)} r^2 \cos^2 \theta \, d\theta \, dr - \int_0^{2\pi} \int_0^{\arctan\left(\frac{a}{c}\right)} r^2 \cos^2 \theta \, d\theta \, dr \]
\[= \int_0^{2\pi} \frac{1}{4} b^4 \, d\theta - \int_0^{2\pi} \frac{1}{4} c^4 a^4 \, d\theta \]

\[V_p = \frac{c\pi}{2} \left[b^4 - a^4 \right] \]

\[d = ca^2; e = cb^2 \]
\[ca^2 = \frac{(d+e)}{2} = \frac{c[a^2 + b^2]}{2} \]
\[r^2 = \frac{a^2 + b^2}{2} \]

\[V_c = \left[\frac{\text{Area}(r_1^2 \pi)}{2} \right] \left[\text{Height} \right] \]

\[V_c = \frac{\pi}{2} \left(a^2 + b^2 \right) \left(c^2 - a^2 \right) \]

\[V_c = \frac{c\pi}{2} \left[a^4 - b^4 \right] \]

Good
Problem 3

Euler also showed that the difference between a frustum of a right circular cone and the corresponding cylinder is one-fourth the volume of a similar cone, with the same height as the frustum and with diameter one-half the difference between the upper and lower diameters of the frustum. Use a double integral to express the volume of a frustum of a right circular cone and show why this is true.

Volume of frustum:
\[
\int_0^{2\pi} \int_0^{b/k} (b-kr) r \, dr \, d\theta - \int_0^{2\pi} \int_0^{a/k} (a-kr) r \, dr \, d\theta = \int_0^{2\pi} \int_0^{b/k} (br - r^2k) \, dr \, d\theta - \int_0^{2\pi} \int_0^{a/k} (ar - r^2k) \, dr \, d\theta = \int_0^{2\pi} \left[\frac{b^3}{2k^2} - \frac{b^3}{3k^2} \right] \, d\theta - \int_0^{2\pi} \left[\frac{a^3}{2k^2} - \frac{a^3}{3k^2} \right] \, d\theta = \int_0^{2\pi} \left[\frac{b^3}{2k^2} - \frac{b^3}{3k^2} \right] \, d\theta - \int_0^{2\pi} \left[\frac{a^3}{2k^2} - \frac{a^3}{3k^2} \right] \, d\theta = \frac{b^3\pi}{3k^2} - \frac{a^3\pi}{3k^2} = \frac{\pi}{3k^2} \left(b^3 - a^3 \right) = V_f
\]

Volume of approximating cylinders:
\[
\pi (b-a) \left(\frac{b+a}{2k} \right)^2 = \pi (b-a) \left(\frac{b^2 + ab + a^2}{4k^2} \right) = \frac{\pi}{4k^2} \left(b^3 + ab^2 + a^2b - ab^2 - a^2b - a^3 \right)
\]
\[
\frac{\pi}{4k^2} \left(b^3 + ab^2 - a^2b - a^3 \right) = V_c
\]
Volume of the相似 cone:

\[V = \frac{1}{3} \pi \left(\frac{b-a}{k} \right)^2 (b-a) = \frac{\pi}{3k^2} \left(b^2 - dab + a^2 \right) \left(b - a \right) = \]

\[\frac{\pi}{3k^2} \left(b^3 - 3ab^2 + 3a^2 b - a^3 \right) = V_\Delta \]

Determine the difference between the approximating cylinder and frustum:

\[D = \frac{\pi}{3k^2} \left(b^3 - a^3 \right) - \frac{\pi}{4k^2} \left(b^3 + ab^2 - a^2 b - a^3 \right) \]

\[= \frac{4\pi}{12k^2} \left(b^3 - a^3 \right) - \frac{3\pi}{12k^2} \left(b^3 + ab^2 - a^2 b - a^3 \right) \]

\[= \frac{\pi}{12k^2} \left(b^3 - 3ab^2 + 3a^2 b - a^3 \right) = V_{D, \text{diff}} \]

\[\therefore \quad \frac{1}{4} (V_\Delta) = V_{D, \text{diff}} \]

Excellent
4) a - see graph

b - this temperature distribution is likely to be caused by a wall heater at one end of a room.

c - Mathematica evaluates
\[\int_{-3}^{3} \int_{0}^{5} (6x - 6x^2 + 2x^3 - 0.002x^4) \, dy \, dx \]
to be 2173.72. Dividing this by the area of the room (5.6 x 30) we get:

\[\frac{2173.72}{30} = 72.4573 \approx 72.5 \]

which is the average height (or temperature in degrees centigrade) for the function over the range specified.

Great
5. a) \(x^{2/3} + y^{2/3} + z^{2/3} = 1 \). Solve for \(z \): \(z = (1 - x^{2/3} - y^{2/3})^{3/2} \) & graph:

\[
\int_0^1 \int_0^{(1-x^{2/3})^{3/2}} (1 - x^{2/3} - y^{2/3})^{3/2} \, dy \, dx
\]

Solve for \(x \) or \(y \) when \(z = 0 = (1 - x^{2/3} - y^{2/3})^{3/2} \) yields \(x = (1 - y^{2/3})^{3/2} \) & \(y = (1 - x^{2/3})^{3/2} \).

A top down view of the first octant is shown. If you take the \(x \) values ranging from 0 to 1 and the \(y \) values ranging from 0 to \((1 - x^{2/3})^{3/2}\) then you can set up the double integral as follows: (8 times this value is the volume.)
c) By letting \(y = \sin^3 \theta (1 - x^{2/3})^{3/2} \) and then finding \(dy = 3\sin^2 \theta \cos \theta (1 - x^{2/3})^{3/2} \ d\theta \) and getting new limits of integration, you have the following integral which can be solved:

when \(y = 0, \ \theta = k\pi = 0 \) (if \(k = 0 \))
when \(y = (1 - x^{2/3})^{3/2}, \ \theta = 2k\pi + \pi/2 = \pi/2 \)

\[
\int_{\frac{\pi}{2}}^{\pi} \int_{0}^{x^{2/3}} \left[1 - \left(\sin^3 \theta \left(1 - x^{2/3} \right)^{3/2} \right)^{3/2} \left(1 - x^{2/3} \right)^{3/2} \right] 3\sin^2 \theta \cos \theta \ d\theta \ dx
\]

\[
= \int_{\frac{\pi}{2}}^{\pi} \int_{0}^{x^{2/3}} \left(1 - \sin^2 \theta \right)^{3/2} 3\sin^2 \theta \cos \theta \ d\theta \ dx = \frac{\pi}{70}
\]

and since this is the volume of one octant, the resulting volume for the entire solid is: \(\frac{8\pi}{70} = \frac{4\pi}{35} \approx 0.359 \)